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Abstract 
Industrial process supervision is an important subject nowdays due to the increased requirement for 
safer processes for operators and effective for companies. Control loops affected by disturbs, are 
grouped with PCA, based on their increased variability and the causal relationships between them are 
detected via Granger causality. A graph drawing algorithm allows indicating the source of the 
disturbance. The procedure is applied to data from a simulated chemical process CSTR. The proposed 
procedeture correctly indicated the sources of disturbances. 
Key words: fault diagnosis, Granger causality, system identification  
 
Resumen  
La supervisión de procesos industriales es un tema importante en la actualidad debido a la creciente 
necesidad de procesos más seguros para los operadores y efectivos para las empresas. Los lazos de 
control afectados por perturbaciones se agrupan con PCA, en función de su mayor variabilidad y las 
relaciones causales entre ellos se detectan mediante la causalidad de Granger. Un algoritmo de dibujo 
de gráficos permite indicar la fuente de la perturbación. El procedimiento se aplica a datos de un 
proceso químico simulado CSTR. El procedimiento propuesto indicaba correctamente las fuentes de 
perturbaciones. 
Palabras clave: diagnóstico de fallas, causalidad de Granger, identificación del sistemas  
 
 
 

1. Introduction  

Technical improvements in recent years have improved quality and productivity in the industry, but they have 
also resulted in the creation of increasingly complex systems to study and keep until their final stage of life. Just 
managing new equipment and performing process maintenance does not guarantee a safe environment for 
operators. Process plant management remains predominantly a manual activity, equally is the detection of 
process abnormalities and the diagnosis of their probable causes. Knowledge about the relationships between 
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process variables is important to support decisions that take you back to your normal and safe operating state. 
According to industry statistics, 70 % of accidents are caused by human error (Nor, N. et al., 2020). Recent events 
at large plants, such as the detonation of the Kuwait Mina Al-Ahmed petrochemical refinery, had estimated 
damage of $ 400 million. Some other case is the explosion of Petrobras’s offshore platform, Brazil, which resulted 
in losses of $ 5 USD billion (Nor, N. et al., 2020). Although these types of large-scale accidents are not usual, 
minor accidents are common, generating both economic and human losses. This indicates that there is still a long 
way to go to improve supervisory and fault diagnosis performance for industrial processes. 

Fault detection and diagnosis is a major problem in  control systems (Alauddin, M. et al., 2018). Chemical 
processes, power plants, factories and others are cases where an undetected failure can contribute to disastrous 
economic, environmental and social effects. Investigations have been conducted to diagnose faults and monitor 
equipment degradation. Artificial intelligence  systems such as neural networks and fuzzy systems have been 
applied to alleviate these difficulties and enhance the process monitoring system. (Kirilova, E. G. et al., 2022) 
provide an extensive review of the various applications of neural networks for chemical engineering purposes, 
and comparisons to existing conventional methods are also shown, both in simulation and online 
implementation. Isolation of faults that propagate their effects on the plant are investigated in (Yong, G. et al., 
2015). Causality detection methods are used, and a new method has been proposed in (Marques, V. et al., 2015). 
In a similar way to the parameter estimation failure detection methods in (Lindner, B. et al., 2019) seeks to detect 
failures through changes in the causal relationships between variables. In addition, allowing the detection of 
changes in the causal relationship, the data generated in each iteration can be used to test the relevance of 
statistical causality, which is very important to increase the reliability in this type of research. This character test 
was performed for Granger causality using surrogate series in (Sysoev, I. et al., 2015).  

Faults or disturbances are detrimental in moving process variables away from their references. Its detection and 
indication of the source is more problematic because its effect disappears over time (He, Z. et al., 2018). The 
usual procedure is to search the databases for the variables affected by the disturbance and investigate their 
cause from the knowledge of the process. This paper proposes a methodology for automatic indication of the 
source of disturbances. Indicating an incipient fault detection approach via detrending and denoising is proposed. 

The article is organized as follows: The next section offers a method for detecting disturbances and grouping 
control loops that have been affected using PCA,  and discusses the steps required to calculate Granger causality 
and proposes a methodology based on it. The methodology for diagnosing system failures will be outlined step 
by step in subsection 2.10 as the application of the proposed procedeture. Section 3 application to data from a 
simulated industrial system CSTR. The conclusions are presented in Section 4. 

2. Fault Detection in industrial systems  

An industrial process has numerous variables, some of which are explicit in its importance to the process and 
some are difficult to know if the process truly depends on them, but the relationship between them must be 
considered. The propose of fault detection is to determine whether a potential fault has occurred in the sensor 
network. A model is generally constructed through the fault-free health-monitoring in structural health 
monitoring (SHM) field data to describe the normality, after that a sensor fault detection index can be defined. 
Due to the difference of model building, the fault detection stage can be divides into unilabiate control chart-
based , multivariate statistical analysis –base and residual based methods. The fault detection index is then 
computed for the currently measured sensor data and compared to a decision threshold. The potential sensor 
fault is determinate to occur after the fault detection index exceeds its corresponding threshold. (Yi, T. et al., 
2018) 
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 A SHM system is usually equipped with different types of sensors , which constitute a sensor network, to collect 
structural responses. Therefore, it is necessary to use multivariate statistics that allows the joint monitoring of 
variables. Typically the   and  statistics are used to calculate thresholds for monitoring non-normal situations, for 
that reason in SHM field, these are grouped using the PCA method (Huang, H. . et al., 2017) ,which in addition to 
reducing the number of data worked, is one of the most frequently used due to simplicity of its application, high 
diffusion in the literature and the possibility of statistical analysis of the process through fault detection index 
that present a superior performance to univariate control diagrams. 

2.1. Principal component analysis  

Consider  as a vector of N samples of m sensors, so each line represents a sampling of each sensor. 
The matrix X must be normalized. It has zero mean and unit variance. The matrix X can be decomposed according 
to the singular value decomposition algorithm (SVD) (Kruger, U.  et al., 2012).  

 
(1) 

Covariance matrix 

 
(2) 

Where 𝑈	 ∈ 	𝑅!"! and 𝑉	 ∈ 	𝑅#"# are unitary matrices, and Σ	𝜖	𝑅!"# contains the non –negative real singular 
values of decreasing magnitude along its main diagonal and zero off diagonal elements. Solving the equation (1) 
is equivalent to solving an eigenvalue decomposition of the sample covariance matrix S. The eigenvalues of the 
matrix S are placed from largest to smallest representing the variance of each component, being the first 
eigenvalue representing the greatest variability of the set of variables (Kruger, U.  et al., 2012). 

 
(3) 

Where the matrix P is related to the highest eigenvalues of the matrix S and the columns of the orthogonal matrix 
𝑉. To find the projections of the matrix X it is necessary to calculate the projection score matrix 𝑇 (Kruger, U.  et 
al. 2012). 

 (1) 

The projection of the T is the estimated 𝑋* 

𝑋* = 𝑇𝑃$  (2) 

Residue values and estimated values 𝑋*	can be obtained (Kruger, U.  et al. 2012). 

𝑟 = 𝑋 − 𝑋* = (𝐼 − 𝑃𝑃$)𝑥 (3) 

2.2. Hoteling’s Statistic    
From the equation (2), assuming invertible S, it's possible to define equation (9): 

𝑧 = Λ%&/(𝑉$𝑥 (4) 
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Hoteling’s statistic is given by (Chiang, L.  et al., 2001): 

 (5) 

The 𝑇( statistic is the square 2-norm of a normalized observation vector x. From the equation (7) a threshold can 
be found to characterize the variability of the data in all observed dimensions. Turned over a significance level, 
appropriate values for the 𝑇( statistic threshold can be automatically determined by using the F distribution. 
Given a α significance level, the threshold can be calculated (Chiang, L.  et al., 2001): 

 
(6) 

2.3. Statistic Q    
The Q statistic is the 2-norm square standard that measures the deviation of the residue generated by the 
difference between the estimate and the observations made, since r is the residue, the statistic is given by 
(Chiang, L. et al., 2001): 

 
(7) 

The Q distribution threshold was approached by Jackson and Mudholkar (Chiang, L. et al., 2001). 

 

(8) 

Where 𝜃) =	∑ 𝜎*() , ℎ+ = 1 − (,!,"
-,##

!
*%./& 	and 𝑐0 is the normal deviation corresponding to the percentage (1 −

𝛼) where α is the significance level. 

2.4. Statistical contributions Hoteling’s Statistic  and Q    
Once a fault is detected, it is necessary to determine which variables have left the control zone, which can be 
extremely complex for systems with many variables. One way to distinguish affected variables is to calculate the 
contributions of each variable to the statistics at the time of failure and to obtain the set of variables that 
contributed to the violation. For the 𝑇( statistic, the contributions at failure times are calculated using the T 
score matrix. Negative contribution values are taken to zero. 

 
(9) 

where 𝜆& is the eigenvalue corresponding to the score matrix column and 𝑋),*  is the normalized sample. To 
calculate the contributions of the residue, the squared residue itself is used (Chiang, L.  et al., 2001). 

 
(10) 
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2.5. Granger causality    
In diverse studies of science, causal relationships are inferred by using temporal signals of interest collected from 
a given physical process. Thus, methodologies that may infer from these data such relationships with a certain 
property have been created and discussed. In 1956, the mathematician Wiener intuitively formulated the idea 
of causality in the prediction of time series (Wiener, N. et al. 1956), which was formalized in the field of 
Econometrics using linear regression models by economist Granger (Granger, C. W. et al.  1969). According to 
Granger causality, given two variables x and y, if the inclusion of past observations of x helps reduce the 
prediction error of y then x causes y. This method was used in a financial market application to investigate the 
uncertainty in predicting output growth in emerging markets (Balcilar, M. et al. 2022) and used to determine cause 
and effect relationships in the social sciences studying life expectancy versus air pollution trajectories in Nigeria. 
(Nwani, S.E. et al. 2022), neuroscience (Barnett et al. 2014), (Seth, A. et al. 2015),  in the field of industrial process 
engineering for root cause detection of disturbance or oscillation (Lindner, B. et al. 2019), (Lucke, M et al. 2022),  
and recent Granger causality review and advances (Shojaie, A. et al. 2022) 

In most of the causal investigations we try to discuss single causes in deterministic situations and two conditions 
are important for causal determinations suppose that an event x is a cause for event y:  

Granger causality assumes that the future can cause neither the present nor the past. In the case of the variables 
x and y, you can have the following situations: 

1. y causes x : (y → x)  

2. x causes y : (x → y) 

3. Feedback occurs between the two variables: (x ↔ y) 

4. There is no causal relationship. 

Thus, what matters is whether there is a statistically significant cause and effect relationship between the 
variables x and y, which only occurs if there is a correlation and temporal precedence relationship between them 
(Granger, C. W. et al.  1969). 

Some procedures must be performed before applying the Granger method to a set of variables of interest. It is 
first necessary to check if there is a requirement to perform some kind of preprocessing to the signals and to 
verify their seasonality. The definition of the order of the estimated models should be chosen based on some 
selection criteria (AIC or BIC, for example), just as the models should be validated using some specific techniques. 
One should also choose the statistical method to infer causality and the correct method for multiple comparisons 
performed (Aguirre, L. A. et al. 2004).  

2.6. Mathematical modeling    
A model is the simplified representation of a real system whose purpose is to identify its most relevant aspects 
without worrying about all the details. A system can be modeled using black box modeling. This modeling, also 
known as identification, assumes that little or no prior knowledge of the process is required, so having only 
available inputs and outputs, it is possible to obtain a mathematical model of the system under study (Ljung, L. 
et al. 1998), (Aguirre, L. A. et al. 2004). 

Among these forms of representation, we can highlight the representation by transfer function, by state space 
and the discrete time representation. Regarding this last representation, consider the following model: 
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 (11) 

Where 𝑦(𝑡) and 𝑢(𝑡) are the system output and input respectively, q is the delay operator,𝜀(𝑡) is the white noise 
residue and all variables are measured in time where 𝑡 = 1,2,3…𝑇𝐴(𝑞), and 𝐵(𝑞) are arbitrary polynomials 
defined by 𝐴(𝑞) = 1 − 𝑎&𝑞%& − 𝑎(𝑞%(…− 𝑎!$𝑞

%!$  and 𝐵(𝑞) = 1 − 𝑏&𝑞%& − 𝑏(𝑞%(…− 𝑏!%𝑞
%!%   the 

parameters 𝑛2  and 𝑛3 refer to the number of parameters or the order of the chosen model. For this work it will 
be considered that 𝑛2 =	𝑛2 = 𝑝 in all cases analyzed, that is the number of poles is the same number of zeros. 
The model presented in Equation (14) is called the autoregressive model with exogenous inputs (ARX), where 
the acronym AR refers to the autoregressive part of the model given by 𝐴(𝑞)𝑢(𝑡) the letter X refers to the entry 
𝐵(𝑞)𝑢(𝑡) is called exogenous variable x. 

In this work, system identification techniques use models whose representation is the ARX. The estimation of its 
parameters made using the least squares method, to properly adjust the input and output data and verify if there 
is a cause and effect between these data. Significantly, for causality analysis, it is not known who is entering or 
leaving the model. For this reason, we seek the causal relationship between the variables by testing them all as 
input and output and verifying if the variables included in obtaining the models help to predict the variable tested 
as output. 

2.7. Model order selection criteria    
To estimate a model using the ARX structure in Granger analysis, is necessary to choose the order of the model. 
One way to make this choice is to use information criteria that minimize a residual function that is penalized by 
the number of regressors used, thus looking for the most parsimonious model. In this direction, we look for the 
model that regards the minimum possible parameters to estimate and explain the behavior of the study variable 
(small error) (Aguirre, L. A. et al. 2004). In this work the following criteria are used: Akaike Information Criterion 
(AIC), Bayesian Information Criterion (BIC) (Ljung, L. et al. 1998). 

 
(12) 

 
(13) 

Where 𝑙𝑛|Σ|   is the napierian logarithm that determines the residual covariance matrix of unrestricted models 
and measures the suitability of the model. Increasing the number of parameters allowed increases the number 
of degrees of freedom, generating less prediction error variation or allowing for more accurate data adjustment. 
Reducing error variability by increasing the number of parameters is balanced by a penalty imposed by the 
reporting criterion. Therefore, how the beginning parts of the equations (15) and (16) measure the reduction in 
residual variation, while the second parts penalize the inclusion of each condition. If the penalty is less than the 
reduction in residual variability, the regressor should be integrated into the model. Differently, the regression 
will bring more cost than benefit and should be excluded from the model, allowing selection of the order that 
minimizes the criterion applied. 

2.8. Granger Conditional Causality    
When the number of variables are greater than 2(𝑛 > 2), the bivariate Granger analysis can be extended to a 
multivariable case (Seth, A. K. et al. 2010). Suppose, for example, that exist three variables 𝑥&, 𝑥(, 𝑥-  and is 
necessary to know if the 𝑥- variable causes the 𝑥& variable. So if excluding the 𝑥- variable significantly increases 
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the model prediction error with the 𝑥& variable output as compared to the 𝑥& model prediction error including 
all variables, then it can be said that 𝑥- → 𝑥&. To demonstrate the mathematical formulation of this analysis, 
consider n variables. An 𝑦4  vector of dimension 𝑛"!  will be used to represent the observed values of all variables 
at the time instant t. Thus, the autoregressive vector of order p can be expressed by: 

 
(14) 

Where 𝐴5  is the square array of parameters of the VAR model. Systems can be represented in matrix form or by 
the equation (15). 

 
(15) 

The condition is 𝑚 > 𝑛𝑝  necessary to avoid singularities in the matrix product 𝑥$𝑥, so that the B coefficients of 
the B matrix can be estimated using the least squares method by the equation (19). 

𝐵* = (𝑋$𝑋)%&𝑋$𝑌 (16) 

To detect the causal relationship of the variable 𝑥- in the variable 𝑥&, first estimate the quadratic sum of the 

residuals with the variable 𝑥& as output and all others as input (unrestricted model):    

𝑅𝑆𝑆& = S𝑦	 − 	𝑋𝛽UV
$
(𝑦 − 𝑋𝛽U)  (17) 

Where y and β correspond respectively to y column and 𝐵*  Then, we estimate the quadratic sum of the 
constrained model residues in the same way using the equation (13), having the 𝑥&variable as output and 
excluding only the 𝑥- variable as input 𝑅𝑆𝑆-&.Then the F distribution test statistic applies 𝐹0(𝑝,𝑚 − 𝑛𝑝) under 
the null hypothesis that the variable 𝑥-  does not cause the variable 𝑥&: 

 

(18) 

The null hypothesis will be rejected if 𝑓""→"! > 𝐹0  or the calculated p-value is less than the significance level α 
used in the test. Thus, it is said that 𝑥- → 𝑥&. To apply the Granger conditional analysis, the prerequisite that 
𝑚 ≥ 𝑛𝑝 must be attended. Knowing that 𝑚 = 𝑇 − 𝑝  the condition for applying the conditional Granger analysis 
is: 

 
(19) 

2.9. Granger multiple variable Causality  
Consider that it is desired to infer causality between the variables by considering the following models found in 
(Seth, A. K. et al. 2010). 

 

(20) 

1
1

p

t l t t
l

y A X e-
=

= +å

( ) ( ) ( ) ( )m n m np np n m nY X B´ ´ ´ ´= +S

3 1

31 1

1
x x

RSS RSS
pf RSS

m np

®

-

=

-

( )1T p n³ +

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

1

2

3

0.8 1 0.5 2 0.4 1 0.2 2

0.9 1 0.8 2

0.5 1 0.2 2 0.5 1

x k x k x k z k y k

y k y k y k

z k z k z k y k

e

e

e

= - - - + - + - +

= - - - +

= - - - + - +



 
ISSN-L: 0798-1015 • eISSN: 2739-0071 (En línea) - Revista Espacios – Vol. 43, Nº 07, Año 2022 

 

BECERRA-ANGARITA O.F. & ALVAREZ-PIZARRO Y.A. «Granger causality procedeture to diagnosis and failture 
in industrial systems» 

Pag. 37 

This model contains 3 different variables which have an autoregressive structure, and for this case, the variable 
x depends on itself and a regressor of z and one of y; The y variable does not depend on another variable, it just 
depends on itself, and finally the z variable depends on itself and y. All variable models are simulated, and white 
noise has been introduced. 𝜀&, 	𝜀(  and 𝜀-.The first step is to determine if the data is stationary, because as a 
requirement, the statistics applied to infer causality assume the stationary of the variables. In the Figure 1, 10 
windows with 100 samples each showing the mean and standard deviation of the variables are presented. The 
graphical result indicates that the data is stationary, as expected, as it was generated to satisfy this requirement. 
If the data had not met this condition, the data should be differentiated until the prerequisite is met. (Ljung, L. 
et al. 1998). 

Figure 1  
Variability stationary test 

 
Source: Authors 

The following step is established on the AIC or BIC criteria to estimate a minimum order to model the information 
(Aguirre, L. A. et al. 2004). In the Figure 2 The AIC and BIC criteria for the signal set are presented. The criteria 
indicate a minimum order of 2 to model all signals, which is coherent if we compare the equation (23). 

Figure 2  
AIC and BIC criteria for x,y and z 

 
Source: Authors 
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Determining the minimum order according to the criteria, the following step is to analyze the autocorrelation of 
residuals that are within the confidence interval for all regressors. In Figure 3, it is possible to verify that the 
second order models adequately represent the signals, so the residue is white noise. 

In order to infer causality between the set of three variables x, y and z, to solve this case it is necessary to perform 
6 independent hypothesis tests or 𝑀 = 𝑛(𝑛 − 1)  where n is the number of variables. Only will be considered 
significant casualties, when the p-value is less than or equal to 𝑓𝐹0 for each direction tested. 

In the Figure 4 The graph found by applying the Granger causality method is shown. Comparing the result 
obtained with the original equation models in equation (23), all causal relationships between x, y and x is caused 
by the other. 

Figure 3  
AIC and BIC criteria Autocorrelation of residues for x, y and z 

 
Source: Authors 

Two variables, just as y  is not caused by any other variable, so no arrow is pointing at her. Being verified the 
method with this simple example; the following will be presented the methodology to solve the problem of fault 
diagnosis in a complex system. 

Figure 4  
Granger causality graph for x, y and z 

 

Source: Authors 

2.10. Proposed procedeture to fault diagnosis     
To properly diagnose the failure the following steps were defined: 
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Step 1 Define and select data for system operation point, this amount of time series must be sure that does not 
have any disturbance, so the system is working properly. Then extract information such as mean and standard 
deviation of the variables, to normalize the data. With this normal dataset, the PCA model include a number of 
components representing as initial test recommendation at least 70% of the variance of the variables, this 
percentage is chosen arbitrarily or by the knowledge about the system, it may be too low or too high for a 
particular application. When the number of observation variables is large and the amount of data available is 
relative small, the 𝑇( statistic tends to be inaccurate representation of the in-control process behavior, especially 
in the loading vector corresponding to the smaller singular values. Additionally, the smaller singular values are 
prone to errors because these values contain small signal noise. Therefore, in this case the loading vectors 
associated only with the larger singular values should be retained in calculating the 𝑇(	statistic (Chiang, L. .  et 
al., 2001). 

Step 2. Using the normalized system operation point data, following the equations (9) and (11) to calculate 
statistical thresholds 𝑇( and Q. 

Step 3. For each new sample compute the statistical thresholds 𝑇(and Q, if the thresholds are violated. After a 
failure is indicated, calculate with the equations (12) and (13), the contributions of each variable to the failure 
are calculated for a time window before and after the failure to raise a sign of the failure with the contributions 
of the two statistics. Select the variables with the highest contribution. 

Step 4. Using the variables separated by the calculation of the contributions, use the Granger causality method, 
to infer causality between the affected variables to find the root cause or the relationship map between the 
variables, but before of that follow the next considerations: 

- To calculate causality relations between variables use the same data used for the normalized system 
operation point data in step 1, but only use the suggested variables indicated by the contribution in the 
step 3. 

- Determine if the data is stationary, because as a requirement, the statistics applied to infer causality 
assume the stationary of the variables. If the data do not have this condition, the data should be 
differentiated until the prerequisite is met (Ljung, L. et al. 1998). 

- To estimate a model using the ARX structure in Granger analysis is necessary to choose the order of the 
model using AIC and BIC criteria. 

Step 5. Identify the source or the sources that originated the fault through a search in the directed graph 
produced by the Granger causality method. 

The main objective in fault diagnosis area is to determine the cause of the fault. Even if the cause is not detected 
using this steps, the information about the control loop where the fault took place is very close to the cause of 
the fault. This information is very useful for process knowledge and may help to complete the diagnosis.    

3. Experimental development, case study  

Continuous stirred tank reactor (CSTR), this system is a simulator modeled in the Fortran language of a chemical 
reactor that takes an exothermic reaction work where the original Fortran code is available in (Finch, F. E. et 
al.1989). The MIT-CSTR software consists of a single file that can be easily compiled by a standard Fortran 
compiler using MATLAB. The system has 18 variables and allows you to enter 22 different faults. The process 
diagram is presented in Figure 5. A substance “A” is inserted into the tank to bring out an exothermic chemical 
reaction to obtain two different products B and C. This system accepts level and temperature control circuits and 
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valve actuators and a fluid pump. In Table 1 the names of the system variables and Table 2 list the 22 faults that 
can be introduced. In this work we will use fault number 19, which is the fault that affects the level controller 
reference 𝑆𝑃&. 

Figure 5  
CSTR system diagram 

 
Source: Finch,F.E .1989  

 

Table 1  
CSTR variable list 

Number Variable Acronym 

1 Feed concentration  

2 Feed flow rate  

3 Feed temperature  

4 Reactor level L 

5 Product A Concentration  

6 Product B concentration  

7 Reactor temperature  

8 Coolant flow rate  

9 Product flow rate  

10 Coolant inlet temperature  

11 Coolant inlet pressure PCW 

12 Level controller output  

13 Coolant controller output  

14 Coolant set point  

15 Inventory  

16 Mol balance  

17 Cooling water pressure drop  

18 Effluent pressure drop  

Source: Finch,F.E. 1989  
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Table 2  
CSTR fault list 

Number Fault Acronym 
1 No fault - 

2 Blockage at tank outlet  

3 Blockage in jacket  

4 Jacket leak to environment  

5 Jacket leak to tank  

6 Leak from pump  

7 Loss of pump pressure PP 
8 Jacket exchange surface fouling AU 

9 External heat source (sink)  

10 Primary reaction activation energy  

11 Secondary reaction activation energy  

12 Abnormal feed flowrate  

13 Abnormal feed temperature  

14 Abnormal feed concentration  

15 Abnormal cooling water temperature  

16 Abnormal cooling water pressure  

17 Abnormal jacket effluent pressure  
18 Abnormal reactor effluent pressure REP 

19 Abnormal level controller setpoint  

20 Abnormal temperature controller setpoint  

21 Control valve 1 stuck  

22 Control valve 2 stuck  

Source: Finch,F.E. 1989  

3.1. Simulation  
The system was simulated for 200 minutes where the first 100 minutes the system was in its normal operating 
mode, then at minute 100 fault number 19 from Table 2 is inserted, Note that this failure affects the 𝑆𝑃& level 
controller reference. In the ¡Error! No se encuentra el origen de la referencia. is shown in the time domain the 
18 simulation variables. 
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Figure 6  
CSTR simulation with fault number 19 at 100 min 

 
Source: Authors  

It is possible to observe how many of the variables left their normal operating point, some of them did not return 
to the previous operating point as others that, having a controller, it compensated the failure through its 
procedure and returned to normal system operation. 

3.2. Fault detection  
The ¡Error! No se encuentra el origen de la referencia. shows the fault indication in the system, the PCA is trained 
with the normal operation data (first 100 minutes), and was reduced to 8 components, representing the 70% of 
the variability of the data set, the algorithm correctly indicated the time when the system left its normal 
operation using the statistics 𝑇( and  Q. 

Figure 7 
Failure indication with Statistics 𝑇! and Q at minute 200
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Source: Authors  

In the ¡Error! No se encuentra el origen de la referencia. the contributions of the statistics for the failure interval 
presented, that is, the scores of each variable. This interval contains the set of samples of the 18 variables from 
minutes 195 to 210 or 5 minutes before failure and 10 minutes after detection. The purpose of this graph is to 
analyze which variables contributed at the time of failure so that the statistics exceeded their thresholds. 

Figure 8 
Contributions of variables to fault 19 in the 195 to 210 minute interval 

 
Source: Authors  

Based on the contributions of fault 19, it is possible to find a pattern or signature of the fault by filtering out 
those moments that are most significant. For this, the sum of all contributions in the time window was performed 
to calculate obtaining 100% of the contribution and from this value a threshold of 1% was used to indicate how 
significant a variable was determined to exceed the threshold. The result of this procedure is shown in ¡Error! 
No se encuentra el origen de la referencia.. This figure shows how from the 200th minute that fault 19 was 
inserted in the system, the variables affected in the 𝑇( statistic were 4, 8, 9, 12 and 13; for the Q statistic, 
variables 4, 5, 7, 9, 12, 13 and 14. As expected, there are several variables in common between the two 
signatures; these significant variables are used to infer causality between them in order to check the causal map. 
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Figure 9 
Fault 19 in 2D signature, in the interval 195 to 210 minutes 

 
Source: Authors 

3.3. Result analysis, Granger’s causality inference on the affected variables  

Succeeding, the next step is to assess whether the data set is stationary in order to apply the Granger method. 
The set of variables chosen with the help of the failure signatures was 4, 5, 7, 8, 9, 12, 13 and 14 the test result 
to check the variables seasonality was negative so it was necessary to differentiate once the data (Aguirre, L. A. 
et al. 2004). After differentiating the data, the test was positive. The next step is to apply the AIC or BIC criteria 
to establish a minimum order for the set of signals. 

Figure 10 
AIC and BIC criteria for selected CSTR variables 
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Source: Authors 

The ¡Error! No se encuentra el origen de la referencia. shows the result of the AIC and BIC criteria. These criteria 
indicate the minimum order to estimate the set of signals, for the AIC the order is close to 10 and in the BIC it is 
in 4, these orders are an approximation or starting point since it must be verified if the autocorrelation of the 
residue is in mostly within the confidence interval. Fulfilling this condition, we can say that the model adequately 
represents the data set since the residue does not contain any more useful information for the model. In this 
case, order 15 was found. The ¡Error! No se encuentra el origen de la referencia. corroborates that the residues 
can be called white noise. 

Figure 11 
Autocorrelation of the residue with model of order 15 for selected variables CSTR 

Source: Authors 

The result of Granger's causality method can be seen in ¡Error! No se encuentra el origen de la referencia. the 
graph shows the cause and effect interactions between the variables that were selected with the fault 
signature. The gain obtained with the subscription managed to reduce the search area by selecting the 
variables that most contributed to the failure. In the graph, the arrow indicates that the pointed variable is 
caused by the variable where the arrow starts. By the graph, fault 19, which affects the 𝑆𝑃& controller 
reference, directly affects three variables and generates a reciprocal effect, between the temperature 
variables. Therefore, even without knowing the source of the failure, it would still be possible to identify it. 
The concentration of product A was not indicated with relation to cause or effect of any other variable, which 
does not indicate that it does not have, only that the method was unable to infer. 
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Source: Authors 

4. Conclusions

The proposed procedure to fault diagnosis with Granger's causality method is reviewed under identification 
framework which can be useful in detecting the root cause of a failure in an industrial system. As stated, the 
order of the model must be done with caution, because, if it is poorly dimensioned, the causal relations between 
the variables may appear or disappear. However, even when not chosen in an appropriate way, they provide 
guidance for investigating the root of a failure. When system identification techniques are used to fit models to 
paired combination of variables, and if the models are deemed to be inadequate as per the correlation tests, 
then one can quickly infer that the variables do not interact. It is shown that, for a given order, the models are 
fitted in both directions, then the cross-correlation between the input and residues allow one to infer causality 
between the two variables. Since the method only requires that the model capture the information contained in 
the input, the method is naturally extended to the multivariate case, when one variable can be affected by 
others. 

The proposed procedure is applied to simulated data from a benchmark problem; indicate the source of these 
disturbances was proposed, only needing the indication of the normal operation period. The affected data by 
the disturbance are grouped checking those whose error signal variance increased significantly. To diagnose the 
source, Granger causality method was used, since it allows to build a directed graph that relates the grouped 
variables. The method can be applied automatically each time that a disturbance is detected by the operation 
the results are then validated and compared with Granger’s method. Measuring the similarity between the 
current operating conditions and historical operating conditions, which can identify abnormal behavior. Thus it 
would be possible to automatically detect the presence of disturbances and immediately indicate its source. 

The Granger method assumes linearity on data. This assumption is fulfilled in this approach since during training 
the variations of process variables keep close to their steady state values. An extension of the method for plants 
with multiple operation points is possible using the concept of data clustering, selecting multiple PCA training 
sets for different operation points. A test to calculate the distance from each new sample to each cluster is 
performed to select the PCA model to be used. 
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