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ABSTRACT:
Many emerging applications generate high volume data
streams. These data streams need to be processed in
an online manner considering limited memory resources
and strict time constraints. Thus data streams pose new
challenges not present in classical machine learning
techniques. They need to be modified, or new
algorithms have to be devised that respond to their
specific requirements. In particular, in this paper, we
present a new clustering algorithm based on Centroid
Tracking for data streams. The idea behind this
algorithm is to model centroid movements and use this
model to predict the next movements. The centroid
movement model is updated with new stream samples,
and only in the rare event of a significant quality loss,
we fall back to a standard clustering algorithm. We
compare our algorithm experimentally with a state of
the art stream clustering algorithm called ClusTree and
determine their robustness in the presence of noisy
data. We conduct experiments based on real-world and
synthetic datasets. The results show that the proposed
approach has good performance.
Keywords: Concept drift; Classification; Data Stream
Mining; adaptive learning

RESUMEN:
Muchas aplicaciones emergentes generan streams de
datos. Estas secuencias de datos deben procesarse en
línea, teniendo en cuenta estrictas restricciones en lo
referente a tiempo y espacio. El procesamiento sobre
streams de datos plantea nuevos desafíos que no están
presentes en las técnicas clásicas de aprendizaje
automático. Los algoritmos deben modificarse o se
deben crear nuevos métodos que respondan a estos
requisitos. En particular, en este artículo, se presenta
un nuevo algoritmo de clustering basado en el rastreo
de centroides para streams de datos. La técnica
propuesta permite modelar los movimientos del
centroide y usar este modelo para predecir movimientos
futuros. El algoritmo propuesto se compara
experimentalmente con un algoritmo de clustering
ClusTree y se determina su solidez en presencia de
ruido. Para ello se usan dataset sintéticos y del mundo
real. Los resultados muestran que el enfoque propuesto
tiene un buen rendimiento.
Palabras clave: Concept drift; Clasificación; Minería
sobre streams de datos; aprendizaje adaptativo
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1. Introduction
In recent years, applications that generate data streams have become commonplace.  A data
stream is a continuous and changing sequence of data made available over time (Jiawei &
Kamber, 2011).  Telecommunication systems, the financial markets, the retail industry,
surveillance systems, scientific and engineering experiments, biological applications and social
networks are representative examples. Streaming data presents challenges in different levels:
querying, scalability, storage, and   mining (Chaudhry, Show, & Abdelguerfi, 2005).
Traditional data mining techniques are suitable for DBMS and data warehouses, but should be
modified, or new algorithms have to be devised to work well on data streams. Data stream
mining requires that the data analysis is executed in an online manner, which means that each
sample is processed on-the-fly without the need for long term sample storage or reprocessing
(Oza & Russell). 
Clustering algorithms are the most common unsupervised machine learning technique.
Clustering is the task of partitioning a set of objects in subgroups (called clusters), such that
objects in the same cluster are similar and objects belonging to different clusters are dissimilar
(Ackermann, y otros, 2012).  Clustering approaches have 3 fundamental characteristics: they
often need multiple iterations, the number of rounds of execution is defined by the convergence
characteristics and, the algorithms commonly work on multidimensional data (Ericson &
Pallickara, 2013).
Motivated by the industry’s need to obtain useful knowledge from data streams in real-time,
several clustering methods have been proposed. Most of them divide the clustering process in
two stages: online and offline. The first one summarizes the data, and the second creates the
final clusters (Ghesmoune, Lebbah, & Azzag, 2016). Data stream clustering poses important
challenges, among them, it must be done in a short time and using limited memory.  In
addition, it should consider the changing nature of data streams and be able to differentiate the
occurrence of outliers or noise from actual changes in the target concept (concept drift) to
ensure the quality of the obtained clustering. The outliers refer to random deviations or
statistical anomalies (Chandola, Banerjee, & Kumar, 2009). The term “concept drift” means that
the statistical properties of the target concept change arbitrarily over time (Widmer & Kubat)
(Wang, Yu, & Han, Mining Concept-Drifting Data Streams, 2010) (Minku & Yao, 2012), causing
the previously constructed model to be inconsistent, hence requiring an update or to be
replaced with a new one to prevent accuracy deterioration (Wang, Fan, Yu, & Han,
2003) (Dongre & Malik). Data stream clustering has important applications in areas such as
intrusion detection, sensor networks, user behavior analysis, stock market analysis, and smart
cities.
In this paper we propose a new clustering technique for data streams, it is referred as ClusCTA
(Clustering based on Centroid TrAcking). This approach uses multiple sliding windows, a
clustering algorithm in the initialization phase, and a centroid tracking method for maintaining
enough knowledge about centroid behavior.  The centroid tracking lets to get an estimate of the
positions, velocities and accelerations of centroids for the next point in time. By maintaining an
up-to-date centroid movement model, we avoid recomputations of the clustering model. We
evaluated the performance of ClusCTA and compared it with ClusTree (Kranen, Assent, Baldauf,
& Seidl, 2011), a state of the art, compact, and self-adaptive index structure, which maintains
stream summaries and reports novelty, concept drift, and outliers. The evaluation used the
same data streams for both techniques, which included noise and concept drift.
The paper is organized as follows. Section 2 presents preliminaries on data stream clustering.
Section 3 describes the technique we propose.  Section 4 shows implementation details and
model evaluation. The last section provides a summary of the findings in this work.

2. Related work
After a thorough review of the related literature, we found that stream clustering methods can



be classified in 3 categories: partitioning stream methods, density-based stream methods and
hierarchical stream methods.

2.1. Partitioning stream methods
This kind of algorithms organizes the instances into clusters, which are formed using a distance
function. The clusters obtained have a spherical shape (Ghesmoune, Lebbah, & Azzag, 2016).
StreamKM++ (Ackermann, y otros, 2012) is a partitioning algorithm for data Streams, which
uses an adaptive approach similar to the K-means++ seeding procedure to get small coresets. 
A coreset is a small weighted example set that approximates the original input example set
with respect to a particular optimization problem. StreamKM++ uses a new structure called
coreset tree to create a coreset. The coreset tree is a  binary tree data structure that stores
examples in such a way that it is possible to perform a fast adaptive sampling, in similar way to
the k-means++.  K-means++ (Arthur & Vassilvitskii) is an enhanced version of k-means, by
augmenting k-means with a very simple, randomized seeding technique (this is a specific way
of choosing the centers, instead of choosing arbitrary centers). A coreset tree for a set of
samples P is related with a hierarchical divisive clustering for the set. The tree start with a
single cluster, which contains the whole set P, and successively split existing clusters into two
subclusters with the restriction that the examples in one subcluster are far from samples in the
other subcluster. The dividing process stops when the number of clusters corresponds to the
needed number of clusters. The coreset tree satisfies 3 properties: 1) each node of the coreset
tree is associated with a cluster in the process of hierarchical divisive cluster. 2) The root of the
coreset tree is associated with the single cluster (it contains the whole example set) and 3) the
nodes related with the 2 subclusters of a cluster C are the child nodes of the node related with
C.  StreamKM++ uses the merge-and-reduce technique proposed by Bentley and Saxe
(Bentley, L., & Saxe, 1980) to obtain a small weighted point set (a small coreset), on which
uses k-means++ algorithm in their offline component to obtain k clusters.  StreamKM++ runs
the k-means++ algorithm on the coreset five times independently and selects the clustering
that minimizes the total distance to centroids. A limitation of StreamKM++ is related with the
use of k-means++. This algorithm does not work properly in the presence of noise and outliers,
and is incapable to detect clusters of arbitrary shapes.
Another method of clustering data streams is CluStream (Aggarwal, Han, Wang, & Yu). This
approach is based on the concepts of a pyramidal time frame and microclustering. Pyramidal
time frame is a technique that stores snapshots at differing levels of granularity depending on
the current time. Since it is not possible to store all snapshots, CluStream chooses a time
horizon to store microclusters, which ensures that clusters can be approximated.  A micro-
cluster (also called cluster feature) is a temporal extension of feature vectors (Zhang,
Ramakrishnan, & Livny, 1996) to create and maintain compact representations of the current
clustering. That is, a set of statistics which summarize a set of instances. CluStream works in
two phases - online and offline phase. The first one places arriving instances in one of the
microclusters kept in main memory, or in a new microcluster if required. The microclusters
disappear depending on their expiration timestamp or when close microclusters are merged. In
the second phase, a weighted k-means is applied to get the final clusters. The macro-clustering
process does not directly use the data stream, only the microclusters, for this reason,
CluStream is not restricted by one-pass requirements. CluStream treats the microclusters as
pseudo-points which are re-clustered in order to determine higher level clusters. This implies
that the k-means algorithm is modified as follows:
- At the initialization stage, the seeds are no longer randomly collected, they are sampled with
probability proportional to the quantity of instances in a given micro-cluster.
- At the partitioning stage, the distance of a seed from a micro-cluster (or pseudo-point) is
equivalent to the distance of the seed from the center of the micro-cluster.
- The new seed for a given partition, is defined at the seed adjustment stage, as the weighted



centroid of the micro-clusters in that partition (Aggarwal, Han, Wang, & Yu).
CluStream, by not manipulating boundary points, offers lower clustering quality. Boundary
detection allows detecting the boundary instances which are located in the border of the
clusters. This kinds of instances have special features. For example, in the case of patients with
tumors, this can be used to detect if they develop malignant tumors (Guo, Wang, & Wang,
2016).
In general, partitioning Clustering Algorithms for Data Stream, usually influenced by noise, are
highly sensitive to the selection of the k parameter, the clustering quality heavily depends of
the initial centroids, and is restricted to finding convex-shaped clusters [6].
Similar to StreamKM++ and CluStream, our solution works in two phases: An online phase and
an offline phase. In the online phase, ClusCTA uses polynomial regression as a strategy to keep
up-to-date a clustering model. In the offline phase, ClusCTA uses ClusTree (a hierarchical
stream clustering, which is described later), on filtered samples to obtain the clusters. The
filtering process runs K-means++ to obtain estimates of the clusters radius, which are used for
the outliers filter, named MCOD (Tran, Fan, & Shahabi) (Kontaki, Gounaris, Papadopoulos,
Tsichlas, & Manolopoulos). ClusCTA differs from earlier approaches in that it offers better quality
of clustering.

2.2. Density-based stream methods
Density-based stream algorithms detect high density and low density areas of the data stream
points. The first are considered as clusters, and the second as noise. These methods find
clusters of arbitrary shapes. This kind of shapes are observed from applications such as
weather satellite images, spatial data, geographic information systems, and epidemiology
(Sharma, Gupta, & Tiwari, 2016).
An algorithm representative of this underlying clustering method is DenStream (Cao, Ester,
Qian, & Zhou). This method introduces the concepts of core micro-cluster (named c-micro-
cluster) and outlier micro-cluster (o-micro-cluster). The first, is a mechanism to summarize the
clusters with arbitrary shape.  The outlier micro-cluster is a structure to distinguish outliers. 
DenStream applies the DBSCAN algorithm to initialize the possible micro-cluster set. A possible
micro cluster for instance p is created when, the total weight in this neighborhood is above βµ,
where β is a parameter to determine the threshold of outlier  relative to c-micro-clusters (0 <β
≤ 1) and µ is an integer representing the overall weight of data points in a core object.
DenStream includes a pruning strategy based on the condition we< βµ , where we is the exact
weight of a possible micro-cluster. This allows a limited memory usage and provides guarantee
of the precision of micro-clusters (growth of new clusters while promptly getting remove of the
outliers). The non-release of the memory (when micro-clusters are deleted or merged), the
time-consuming pruning phase for deleting outliers and no addressing the concept drift problem
are considered as drawbacks of the DenStream (Amini, Wah, & Saboohi, 2014). 
The main challenge of Density-based stream methods is the process of density estimation,
which may be computationally expensive (Aggarwal C. ).

2.3. Hierarchical stream methods
This clustering groups the data into a binary-tree based data structure (or dendrogram) of
clusters, which lets to summarize and visualize the data. The applications of this type of
grouping come from areas such as biometric identification systems, sensor networks, students'
performance evaluation systems, genomics, and zoology (Pirim, Ekciouglu, Perkins, & Yuceer,
2012).
Hierarchical algorithms do not require a user-predefined number of target clusters. Once the
tree is constructed, it is possible to choose the quantity of clusters by splitting the dendrogram



at different levels, without re-executing the algorithm for the same dataset (Ghesmoune,
Lebbah, & Azzag, 2016).  A representative technique for this kind of clustering is ClusTree
(Kranen, Assent, Baldauf, & Seidl, 2011). This approach proposed by Kranen et al., is a
parameter-free algorithm that incorporates the age of the objects to give more importance to
recent data. It also uses micro-clusters, compact representations of the data distribution, to
automatically adapt to the speed of the data stream.   ClusTree is a compact and self-adaptive
index structure for keeping stream summaries. The Indexing is achieved by using a structure,
which extends from the R-tree (Beckmann, Kriegel, Schneider, & Seeger) (Guttman) (Seidl,
Assent, Kranen, Krieger, & Herrmann) family.  This tree lets to store and maintain a compact
view of the current clustering. An arriving instance is inserted into the corresponding micro-
cluster, and probably merged with aggregates of previous instances. The indexation of micro-
clusters, a similar concept to the presented in (Zhou, Cao, Qian, & Jin, 2008), allows to
incrementally assign objects to the most similar micro-cluster. A micro-cluster CF = (n, LS, SS)
maintains the linear sum LS of n objects and their squared sum.  This tuple allows computing
the mean and variance of the microcluster and can be incrementally updated.   
To place a new instance, ClusTree descends the hierarchy to reach the leaf micro-cluster closest
to the instance. Each entry in the hierarchy describes the cluster features properties of their
corresponding sub tree. Local aggregates are added into the tree as temporary entries.  The
local aggregate stores the instance temporarily, using the arrival time for computing a buffered
local aggregate regularly.
The ClusTree is created and updated in a similar way to any multidimensional index, with the
difference that it stores CF’s instead of the minimum bounding rectangles (in addition to the
instances).  For insertion, the ClusTree uses the closest mean calculated by Euclidean distance.
For the splitting, the entries are combined in two sets such the sum of the intra-group distances
is minimal. An insertion in the ClusTree, has a low runtime of O(log2(n)).
ClusTree has a buffer in each cluster feature to store aggregates or instances that do not reach
leaf level during insertion. When a leaf node is reached and the insertion of a new instance
would generate a split, ClusTree checks whether there is still time left (If there is no time, the
closest two entries are joined).
Clustering has to be performed in a single pass over the incoming data and cannot take longer
than the average time between any two objects in the stream (Kranen, Assent, Baldauf, &
Seidl, 2011). When a leaf node entry is created, it is assigned an id. Concept drift detection is
accomplished by tracking micro-clusters, which assign unique ids to every new leaf entry. When
entries are combined, this is recorded in a merging list that contains pair of ids.
The clustering resulting from the ClusTree is the group of CFs stored on the leafs.  By taking the
means of the CFs, it is possible to apply a density based algorithm such as Density-based
spatial clustering of applications with noise (DBSCAN) to detect clusters of arbitrary shape
(Ghesmoune, Lebbah, & Azzag, 2016).
The incremental decision tree algorithms produce a single model that represents the entire data
stream. In presence of concept drift, the prediction accuracy is affected when it is necessary to
classify an instance that has a very different distribution from the historical data (Wang, Yu, &
Han, Mining Concept-Drifting Data Streams, 2010).The authors of (Stahl, Gaber, & Salvador,
2012) discuss the how treescannot abstain from a potentially erroneous classification, since
they tend to force the classification of every instance.  It has also been pointed out (Wang, Yu,
& Han, Mining Concept-Drifting Data Streams, 2010) that considerable changes (as replacing
old branches or building alternative sub-branches) severely compromise the efficiency of the
algorithm.
In general, in the context of data stream clustering approaches (partitioning stream methods,
density-based stream methods or hierarchical stream methods), we highlight some drawbacks.
Recent studies weight the importance of determining suitable criteria to identify the cluster
validity in data stream clustering (Khalilian & Mustapha, 2010). Another difficulty is to



determine parameters such as the correct cluster partitions in stream of data in special when
two or more   clusters move  together  and it is necessary to dynamically merge or split
(Hasan, 2014) clusters.  Another drawback arises when trying to achieve a balance between
concept drift and noise, in this case a penalty term may reduce the accuracy of clustering (Chen
& Luo, 2015).

3. The centroid tracking approach
In this section, we introduce a new Clustering technique based on Centroid Tracking for Data
Streams. We refer to this method as ClusCTA.
ClusCTA uses multiple sliding windows and centroid tracking for maintaining enough knowledge
about centroid behavior.  The centroid tracking lets to get an estimate of the positions,
velocities and accelerations of centroids at  time t.   ClusCTA uses a clustering technique to
bootstrap the clusters and build a model that tracks the behavior of cluster centroids.
At the beginning, ClusCTA constructs a clustering model by running 5 times the k-Means++ as
soon as the arrival window fills for the first time and it keeps the best of the five clustering
models. This technique was used in (Arthur & Vassilvitskii) to prevent that a bad choice of
random seeds leads to a poor clustering. Then, based on the estimated radius of the obtained
clusters, configures MCOD (Tran, Fan, & Shahabi) (Kontaki, Gounaris, Papadopoulos, Tsichlas, &
Manolopoulos) to perform an outlier filtering process.
MCOD is an approach based on microclusters that uses a priority queue to store instances. The
micro-clusters correspond to regions containing inliers only, which are  composed of no less
than   k + 1 data instances. A micro-cluster has a radius of R/2 and, according to the triangular
inequality, the distance between every pair of instances inside this is no greater than R. MCOD
performs a range query for each new instance with respect to the (fewer) microcluster centers.
Then, MCOD examines the PD list for o′s neighbors within distance R/2.  If there are at least k
neighbors in PD then a new microcluster is formed with o as the cluster center. Otherwise, o is
added to the PD list (which contains the instances does not fall on a microcluster). After
processing the sliding window, the instances in PD that have less than k neighbors are reported
as outliers. MCOD is already implemented on the Massive On-line Analysis (MOA) framework
(Bifet, Holmes, Kirkby, & Pfahringer, 2010).
MCOD requires setting a search radius as parameter per cluster. To calculate this radius, we
sort the distances between the instances in a cluster and its centroid and set as radius the
distance corresponding to ninth decile. The first centroids calculated are stored at an array of
current Centroids. After this, we maintain a sliding window of samples per cluster with a
maximum size of n/k. When a new instance arrives, it is processed individually, associated with
a cluster (using a Nearest Neighbor Criteria) and recorded in the sliding window of the
corresponding cluster. Additionally, we have a motion window per cluster (of size m). In this
window we record the arrival time of the new sample and the impact that it has on the
movement of its centroid. The data recorded in the centroid motion window is used to get the
tracking model.
To conclude the initialization phase, ClusCTA invokes ClusTree on the filtered window and it
returns the clustering model of the initial sample window. 
The application of the ClusTree on the filtered data allows obtaining some a set of good quality
initial centroids. It is important for ClusCTA to start the centroid tracking process from a good
quality initial centroids, even if there is noise in the data stream.
The centroid tracking model is calculated using multivariate polynomial regression to fit points
corresponding the centroid movements, this allows to maintain enough knowledge about
centroid behavior (Rossi, Allenby, & McCulloch, 2012, p. 32). The centroid movement model can
be assimilated to the continuous - time motion of a particle, of which only a few discrete
samples are known. A typical model for the particle movement is the second-order Taylor series
expansion around time t.  It is possible to obtain from the tracking function, an estimate of the



distance from origin, velocity and acceleration of each centroid. In fact, any polynomial is equal
to its Taylor series expansion centered at 0.   The multivariate polynomial regression is an
empirical algorithm to model systems based on observed data, advisable when the data does
not have much noise.
We obtain the coefficients of the polynomial regression by using Eq. (1).

                                                    (1)
X is called the design matrix, in which each row corresponds to a time vector, C is the matrix of
coefficients (in this the coefficient vectors   a, b,  c, d… z for each problem i are stacked
horizontally) and “y” is a matrix where each row is the estimated centroid at the time instant ti.
The centroid tracking process is repeated for every new instance. A polynomial regression
model, is computed for the centroid of each cluster and updated on new instance arrivals. The
total time complexity of polynomial regression is O (C2N), where C is total number of features
and N are the number of samples (in a sample window, which is a constant). When the model
for a cluster is calculated we get a new centroid, which is used to update the array of current
Centroids. The clustering resulting from centroid tracking is the set of points stored in this
array.  

4. Implementation and evaluation
We implement ClusCTA on top of the Massive On-line Analysis (MOA) framework, a widely
known framework for data stream mining written in Java.
After the initialization stage, ClusCTA starts the operation phase.  For this, ClusCTA calculates,
with the arrival of a new instance, the impact that it has on the movement of its centroid. This
impact is recorded in the clusters centroid motion window. When the centroid motion window is
full, it builds the movement model using the  polynomial regression. 
The Centroid Tracking model was implemented using a degree-d polynomial regression. For our
experimental evaluation we used d=2. As this is a per-sample process, we used an optimized
implementation of Eq. (1) whose performance depends only on the length of the motion
window (a constant configurable parameter of the algorithm). The updated centroids are stored
in the array of current centroids.
ClusCTA only resets the current centroids when it detects that a centroid is lagging behind the
actual cluster. After a reset, the clustering is restarted running again ClusTree.  The centroid
lags behind when clusters overlap or when a cluster abruptly changes its speed. In order to
detect if a centroid is lagging behind, we use two strategies: A Multivariate Exponentially
Weighted Moving Average (MEWMA) filter, and a cluster size estimator. The MEWMA filter
(Hotelling, 1931) (Lowry, Woodall, Champ, & Rigdon, 1992) allows computing the Hotelling’s T2
(Lowry, Woodall, Champ, & Rigdon, 1992) control chart (a distance measure) that when above
a given threshold gives an out-of-control signal.
The second, considers the number of instances that belong to the cluster (this is, the cluster
queue), when it falls below a given threshold (for example, in a 60% of the sample sliding
window size), we conclude that cluster moved, but its centroid is lagging behind. The lag of
centroids causes the previously constructed model to be inconsistent, requiring a reset of the
clustering model to prevent accuracy deterioration [11-12]. In both cases, invocations of the
base clustering technique (ClusTree in our implementation) only occurs when the clustering
precision declines.
To evaluate the performance of ClusCTA we executed a set of experiments using both: real-
world datasets and synthetic datasets. For comparison purposes, we ran ClusTree (Kranen,
Assent, Baldauf, & Seidl, 2011) on the same input streams. We choose ClusTree because, to our
knowledge, is the best available algorithm that maintains an updated cluster model and reports



concept drift, novelty, and outliers (Kranen, Assent, Baldauf, & Seidl, 2011).
Synthetic datasets were created with the class RandomRBFGeneratorEvents (Bifet, Holmes,
Kirkby, & Pfahringer, 2010), which is part of MOA. RandomRBFGeneratorEvents is a generator
based on the random Radial Basis Function that adds drift to samples in a stream (Bifet,
Holmes, Kirkby, & Pfahringer, 2010). The random radial basis function (Bifet, Holmes,
Pfahringer, & Gavalda, 2009)   generates a fixed number of random centroids. Each centroid is
defined by the initial random position, the class label, its standard deviation, and its weight.
RandomRBFGeneratorEvents creates instances by doing a weighted random selection of a
centroid, which determines the label. The random radial basis function gives rise to a normally
distributed hyper sphere of instances enclosing each centroid.  Drift is added by moving the
centroids at different rates.
We modified the class RandomRBFGeneratorEvents, to allow generating instances with different
noise levels and velocities.  In the case of noise, we generate for each n samples, a percentage
of random samples outside the clusters defined by the generator. For our experiments we used
noise levels of: 0%, 5%, 10%, 15%, and 20%.
For the assessments with synthetic datasets, we create 5 clusters, of which 2 have no
movement (speedOption=0) and 3 do. During the experiment execution, a moving cluster can
change its speed (speedOption may take 3 different values: 0.01/500, 0.001/500 and 0.1/500).
Speed is given as distance units in the feature space every 500 samples. 
As real-world datasets we used Skin_NonSkin and Human Activity Recognition (HAR) (Velloso,
Bulling, Gellersen, Ugulino, & Fuks, 2013). Skin Segmentation is a dataset with 245057
examples, out of which 50859 is the skin samples and 194198 is non-skin samples. Skin
Segmentation has 3 numeric attributes (x1, x2 and x3) and 2 classes (0 and 1).   Skin
Segmentation dataset is generated using information from images of various age groups
(young, middle, and old), ethnic groups (white, black, and Asian) and genders.  This dataset is
useful to support the decision-making of dermatologists. This information (for being a unique
characteristic) has applications in areas as identity confirmation, skin tracking and visual
information systems (Bhatt, Sharma, Dhall, & Chaudhury, 2009) (Neshat, Sepidname, Eizi, &
Amani, 2015).
The HAR dataset is based on the Human activity recognition and has 165507 samples. The
experiments were carried out with 4 volunteers (2 men and 2 women, all adults and healthy)
and consider 5 activity classes: sitting, standing up, standing, sitting down, walking. Each
person wore tri-axial accelerometers on their waist, left thigh, right arm, and right ankle. 
Dataset were collected during 8 hours of activity. Each record has 17 numeric attributes  (age,
tall, weight, mass, x1, y1, z1, x1, y1, z1, x2, y2, z2, x3, y3, z3) and  the class label.  Datasets
as HAR are useful to provide information about patients’ routines to support the development of
healthcare applications (Velloso, Bulling, Gellersen, Ugulino, & Fuks, 2013).
ClusCTA is a clustering-based approach that work with continuous data, a requirement met by
both, the Skin_NonSkin and the HAR datasets. Although both datasets are tagged we did not
use the tags in the experiments as ClusCTA is an unsupervised clustering algorithm.
For the evaluation, we use a sliding window of 350 centroid movements to construct the
polynomial regression model.
In our evaluation we also calculated the quality of clustering and made the comparative
analysis with respect to ClusTree for different noise levels. The quality metrics used were the
Silhouette coefficient and the F-measure.   The quality results obtained on synthetic datasets
over time, are summarized in Figures 1-5. It is also important to clarify that the regression
coefficients change over time, as well as the positions of the moving centroids, therefore for
space considerations we omit this information.
To analyze the results of Figs. 1-5 we consider the quality measures as random variables that
change over time. These random variables do not follow a Gaussian distribution, therefore we
used a non-parametric alternative test to compare the two collections of measures. Then we



register a performance index for both ClusCTA (our algorithm), and the baseline algorithm
ClusTree.

Figure 1
Clustering quality of ClusTree and ClusCTA, noise=0%

Source: Own image
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Figure 2
Clustering quality of ClusTree and ClusCTA, noise=5%
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Figure 3
Clustering quality of ClusTree and ClusCTA, noise=10%



Source: Own image

-----

Figure 4
Clustering quality of ClusTree and ClusCTA, noise=15%
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Figure 5
Clustering quality of ClusTree and ClusCTA, noise =20%
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For this purpose, we use Mann-Whitney U test (Mann & Whitney, 1947) for evaluating the
results obtained for the Silhouette coefficient the F-measure.  We test the hypothesis of equal
medians for two independent samples. The same process is repeated for F-measure.  F-
measure is the harmonic mean of Recall and Precision (Makhoul, Kubala, Schwartz, &
Weischedel, 1999).  The Table I shows the results obtained.

Table 1
Mann-Whitney U Test for different noise levels

Noise
Level

Silhouette
ClusTree

Silhouette
ClusCTA

F-Measure
ClusTree

F-
Measure
ClusCTA

0% p-value = 0,412436

The null hypothesis is not
rejected for alpha = 0.05.

 p-value = 0,3128046

The null hypothesis is not
rejected for alpha = 0.05.



5% p-value = 0

The null hypothesis is rejected
for alpha = 0.05.

p-value = 0

 The null hypothesis is
rejected for alpha = 0.05.

10% p-value = 0

The null hypothesis is rejected
for alpha = 0.05. 

p-value = 0

The null hypothesis is
rejected for alpha = 0.05.

15%  p-value = 0

The null hypothesis is rejected
for alpha = 0.05.

W = 4,0239E6   p-value =
0

The null hypothesis is
rejected for alpha = 0.05.

20%  p-value = 0

The null hypothesis is rejected
for alpha = 0.05.

 p-value = 0

The null hypothesis is
rejected for alpha = 0.05.

Source: Own image

For the base case (no noise present in the dataset), the behavior of both algorithms is similar.
In this case, the analysis shows that the null hypothesis is not rejected, meaning there is not a
statistical significant difference between the performances of both algorithms. However, as the
noise increases, the figures show that ClusTree’s quality suffers severe drops for some time
intervals, while ClusCTA maintains good quality metrics. This observation is confirmed by the
statistical analysis of Table 1 that shows that the null hypothesis (that the performance is
similar) was rejected for all cases with noise level greater or equal to 5%. This lets us conclude
that for all experiments with synthetic datasets, the quality of the centroids obtained with
ClusCTA is equal to or higher than with the baseline algorithm.
ClusTree shows difficulties when the cluster changes its speed, especially when it becomes
higher. In this case, the centroid “remains behind” in the sense that stays far from the true
centroid.

Figure 6
Two ClusTree centroids lag behind, after overlapping



Source: Own image

Figure 6 (left) shows two centroids that remain behind their cluster center after an overlapping
event when using ClusTree. Also, for the yellow and orange clusters, ClusTree shows a single
centroid. For the same data stream, when running ClusCTA, the centroids are rapidly updated
after the overlap event, and maintain good correspondence with the clusters, as shown in Fig. 6
(right). The quality measures obtained with the real-world datasets are presented in Figures 7
and 8. 

Figure 7
Clustering quality of ClusTree and ClusCTA 
on real-world data set over (Skin_NonSkin)



 Source: Own image

-----

Figure 8
Clustering quality of ClusTree and ClusCTA on real-world data set over HAR



Source: Own image

ClusCTA runs well with both datasets. With ClusCTA, we observe a decrease in F-Measure and
Silhouette for HAR dataset, this occurs because the dataset is imbalanced.  The problem of
class imbalance consists in almost all the samples are labeled as one class, while far fewer
samples are classified as the other class (Guo, Yin, Dong, Yang, & Zhou). ClusCTA scored at or
above ClusTree for the Silhouette coefficient and F metrics. Although the results are promising
with real-world datasets, they pose significant challenges for learning in unbalanced datasets. It
is necessary to improve the recall, which gives the low performance on the F-measure.

5. Conclusions and future work
In this paper, we propose a new model of clustering online data streams. This new method uses
centroid tracking and polynomial regression to predict the centroid movements with high
precision, therefore maintaining a very accurate clustering model of streamed data. With
ClusCTA the model needs to be recomputed rarely (if at all). It may be noted that other curve-
fitting methods could potentially be used. For example, smoothing splines, but exploring this
possibility is left for future work.
We showed that our approach provides better or equal quality of clustering compared to
ClusTree, a state of the art data stream clustering technique. We observed that, although
ClusTree has shorter execution times, with ClusTree it is very possible that the centroids will not



correspond to the actual cluster. Hence, the quality of clustering obtained by ClusTree is very
poor.  ClusCTA represents a good trade-off between cluster quality and running time. It should
also be pointed out that we did a sequential implementation, but there are many parallelizable
operations in the algorithm, that would allow significant performance improvements.
Our experiments also showed that the filtering process for discarding noise instances,
contributed to the quality of clustering. Quality is also linked to a good starting set of centroids.
We used the 5-times k-means++ heuristic to obtain a good set of starting centroids, but it is
still a challenging and interesting problem to consider for future work.
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